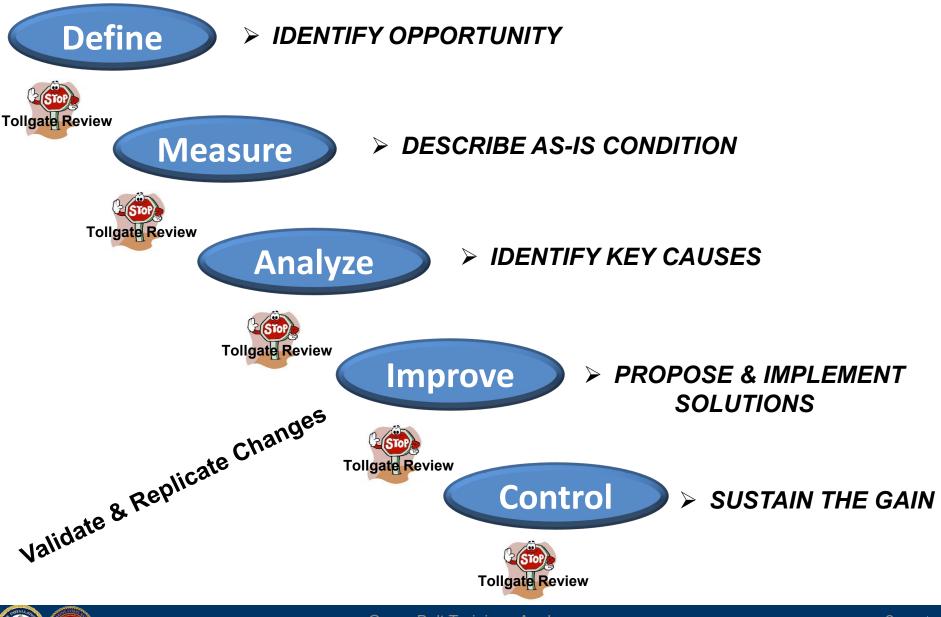
ANALYZE PHASE

CONTINUOUS PROCESS IMPROVEMENT

IMPROVE


CONTROL

MEASUPPE

DMAIC Methodology

Learning Objectives: Analyze Phase

- Understand the tools necessary to complete the Analyze Phase.
- Create and interpret data analysis tools such as histograms, Pareto charts, fishbone diagrams, etc.
- Properly apply Root Cause Analysis to analyze process problems.
- Compute and interpret statistical results that measure location, variation, and shape.
- Identify and explain the objectives and benefits of statistical process control (SPC).

"If you can't describe what you are doing as a process, you don't know what you are doing." – Edward Deming

Data Tools

CONTINUOUS PROCESS IMPROVEMENT

IMPROVE

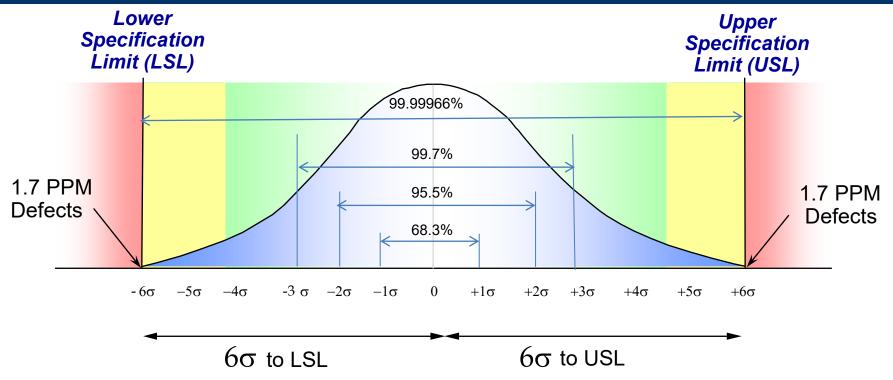
CONTRO

MIEASUPA

LYZE

Six Sigma as a Metric

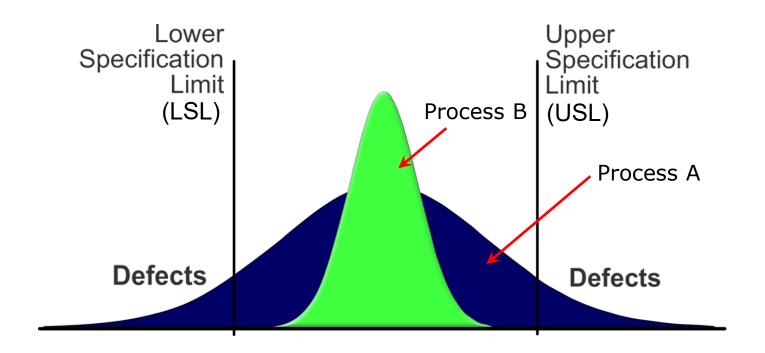
- Benchmark for perfection.
- A Six Sigma process results in only <u>3.4 defects per million opportunities</u> (DPMO).
 - > A defect is anything that does not meet customer requirements.
- Manage process variation.
- Monitor Key Performance Indicators (KPI).
- Drive continuous improvement.



Adapted from Six Sigma as a Management System, McCarty, ASQ 2005

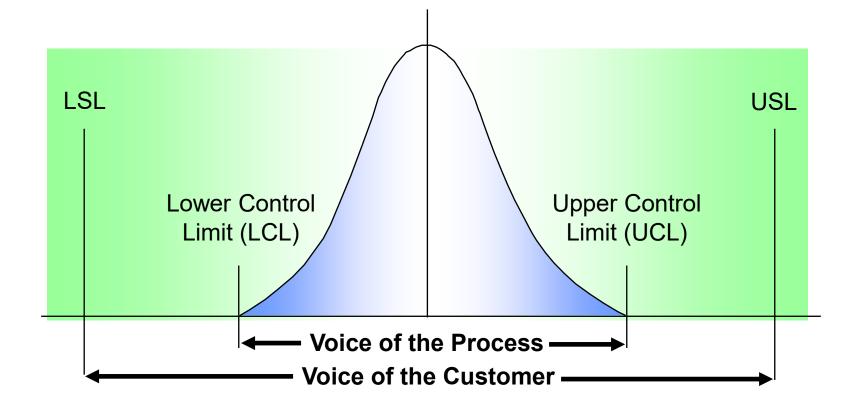
Six Sigma

Six Sigma is focused on the reduction of variation using process improvement tools, with the ultimate idea of removing defects (i.e. rework, waste).


Sigma Level	Defects per Million	Yield
6	3.4	99.99966%
5	230	99.977%
4	6,210	99.38%
3	66,800	93.32%
2	308,000	69.15%
1	690,000	30.85%

Variation in the Process

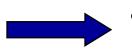
Based on Statistical Thinking


- > All work is a series of processes.
- > All processes have variation.
- Businesses improve when they reduce or eliminate variation.

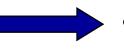
Critical Relationship Between Process and Customer

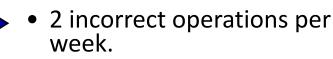
MEASURED IN UNITS OF STANDARD DEVIATION (SIGMA)

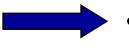
Why "Six Sigma"?


Hey, 99% is good enough right?

99% or 3.8 σ (Sigma)

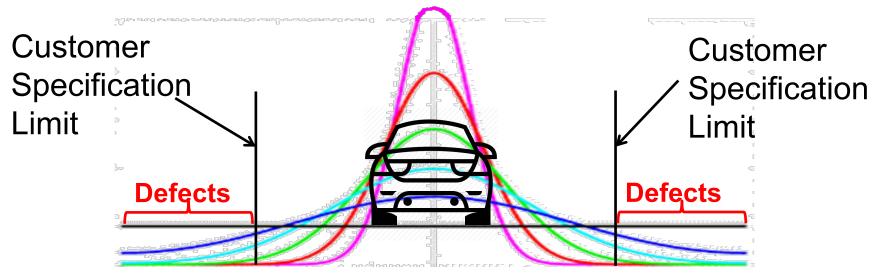

- 20,000 lost postal mail items per hour.
- 15 minutes of unsafe drinking water per day.
- 2 long / short landings per day at a major airport.
- 5,000 incorrect surgical operations per week.
- 7 hours of lost electricity per month.
- 20,000 incorrect prescriptions per month.


• 7 lost postal mail items per hour.



1 unsafe minute every seven months.

1 long / short landing every five years.


- 1 hour without electricity every34 years.
- 6 wrong prescriptions per month.

Understanding Variation

- **Common cause** (inherent) **variation** is always present in a process.
 - A process that exhibits only common cause variation is a <u>stable</u> process.
 - A stable process is predictable.
- **Special cause** (assignable) **variation** is some unusual, uncommon event.
 - A process that exhibits special cause variation is an <u>unstable</u> process.
 - An unstable process is <u>unpredictable</u>.

Common Cause Variation Overview

- ➤ Usually part of the process.
- Acting totally random and independently.
- Root causes are in the key elements of the system.
 - Slight variations in raw materials
 - People
 - Slight machine vibration
 - Environment

Special Cause Variation Overview

- Caused by a special abnormal activity resulting in an unexpected change in the process output.
 - Incorrect machine setup
 - Defects in materials
 - Untrained operator
 - Programming error

- > The effects are intermittent and unpredictable.
- All processes must be brought into statistical control by first detecting and removing the special cause variation.

Comparison of Variation Types

Special causes, for example, could result from someone tripping over the shooter when the gun is fired.

Special Cause Common causes, for example, could result from equipment not being calibrated properly. **Common Causes**

Reducing Variation

The two types of variation require different approaches and tools to detect and attack them.

Eliminate special cause variation.

• By isolating root causes and controlling processes.

Reduce common cause variation.

• By improving the system.

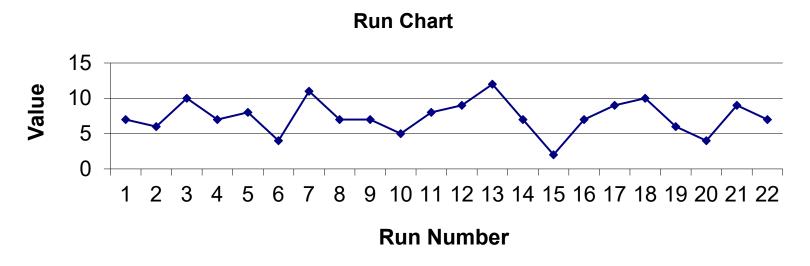
> Anticipate variation.

• By designing robust processes and products.

> Use tools to identify common and special cause variation.

 Time Series Plots, Histograms, Pareto Charts, Scatter Plots, Fishbone Diagrams, etc.

4


Time Series Plot (Run Charts)

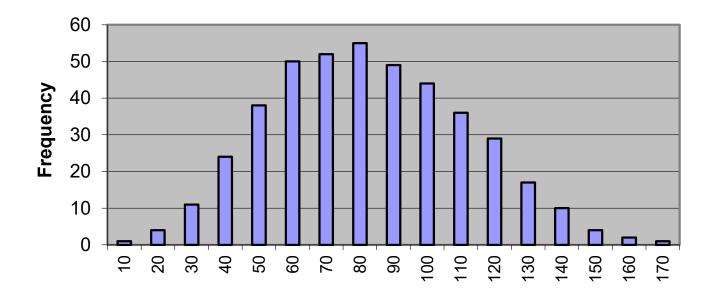
- Plots data arranged in time sequence.
- Used for preliminary analysis of data measured on a continuous scale.
 - Weight
 - Size
 - Distance
- >Analysis of run charts shows:
 - Patterns can be attributed to common cause, or
 - If special causes of variation are present.

Run Charts - Example

- Collect and record data in the order they occur.
- Label vertical axis based on characteristic value (weight, size, distance, etc.).
- Plot the data points on the chart and draw a line connecting them in sequence.

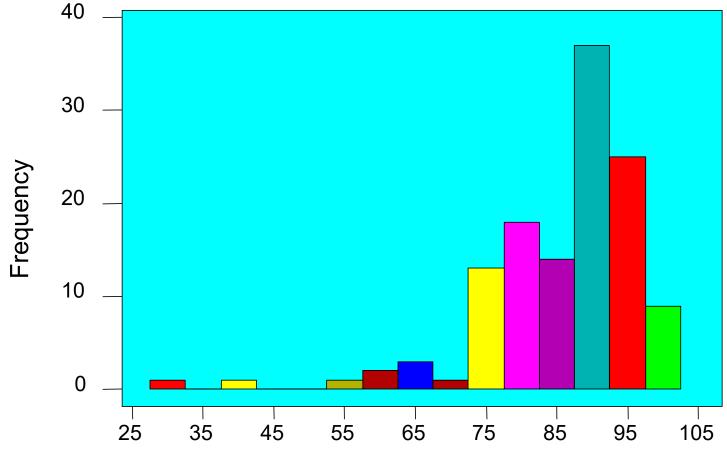
Histograms

- A histogram is a useful way of graphically displaying data in groups.
- Divide the data into classes.
 - Classes may be attributes (e.g., Red, Yellow, Green, Blue, Brown, Orange).
 - For classes of variable data divide the data into ranges (e.g., Class 1 is between 0 and 10, Class 2 is between 10 and 20).
 - Count the number of occurrences in each class and chart on a bar graph.



Histograms Display

Histograms display characteristics of a data set based on:


- 1. Measures of central tendency (location).
- 2. Measures of variation (spread).
- 3. Measures of distribution (shape).

Histogram Example

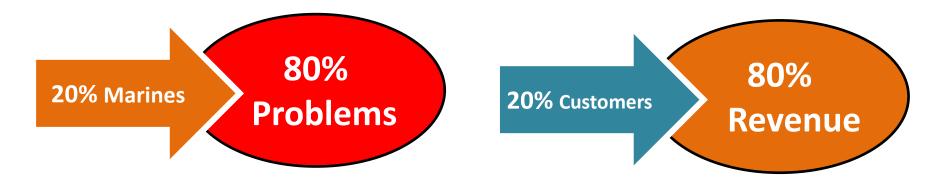
Frequency of Test Scores

Test Scores

Pareto Charts

Similar to histograms.

• Aligns categories in descending order.

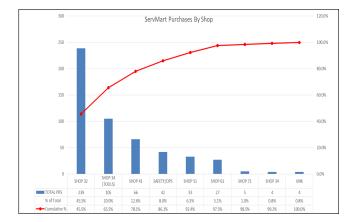

The "80/20" Rule:

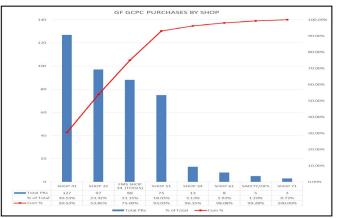
Pareto charts illustrate the concept that, for any given distribution of the results:

The majority of the distribution (80%)

is determined by

a small part (20%) of the potential contributors or causes.




Pareto Charts - Example

Constructing Pareto Charts

There are 3 steps to construct a Pareto Chart

- 1. Data Collection
 - a. Collect data by category
- 2. Construct Frequency Table
 - a. Count Frequency of occurrence by category
 - b. Arrange category in descending order
 - c. Calculate '% of Total' and 'Cumulative %'
- 3. Draw Pareto Chart
 - a. Bars for each category (use left axis)
 - b. Line for cumulative % by category (use right axis)

Step 1: Data Collection

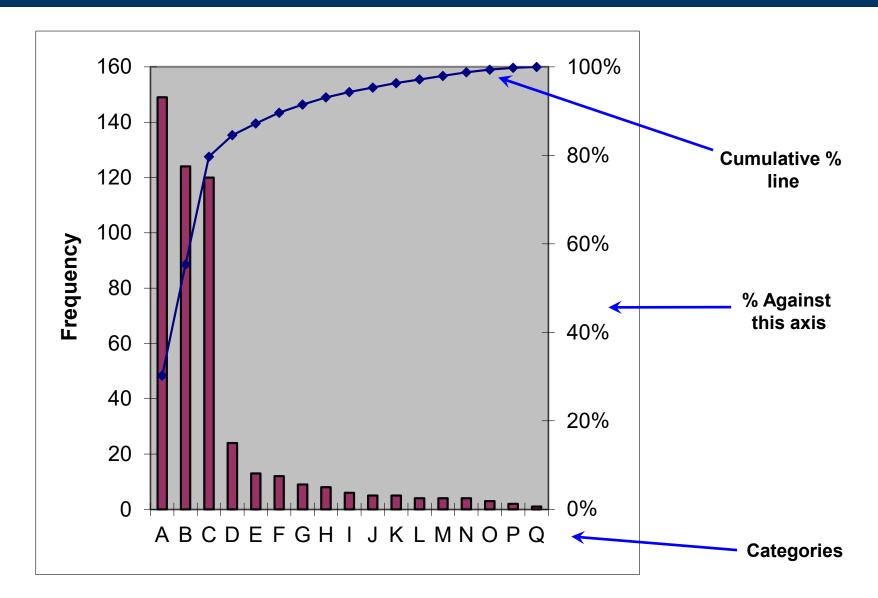
Category	
A	
В	Collect data by actoriany
С	Collect data by category
D	
E	
F	
G	
Н	
Ι	
J	
K	
L	
М	
N	
0	
Р	
Q	

Step 2: Construct a Frequency Table

Category	Frequency	% of Total	Cumulative %
A	149	30.2%	30%
В	124	25.2%	55%
С	120	24.3%	80%
D	24	4.9%	85%
E	13	2.6%	87%
F	12	2.4%	90%
G	9	1.8%	91%
Н	8	1.6%	93%
l	6	1.2%	94%
J	5	1.0%	95%
K	5	1.0%	96%
L	4	0.8%	97%
М	4	0.8%	98%
N	4	0.8%	99%
0	3	0.6%	99%
Р	2	0.4%	100%
Q	1	0.2%	100%
Total	493		

Notice: "Cumulative %" Is Category
A Frequency + Category B etc.

1. Count Frequency of occurrence by category


2. Arrange category in descending order

3. Calculate '% of Total' and 'Cumulative %'

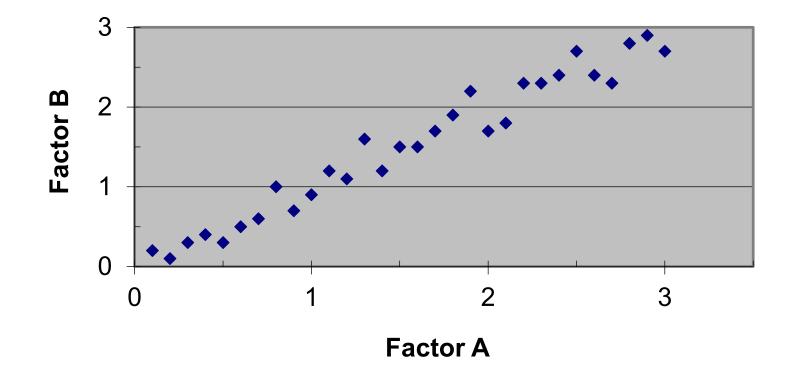
Notice: "Frequency" column data arranged in descending order

Step 3: Draw the Pareto Chart

➡

Scatter Diagrams

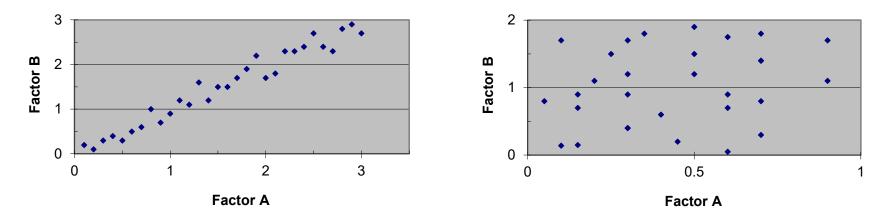
Used to determine whether a correlation (relationship) exists between two factors, or it doesn't.

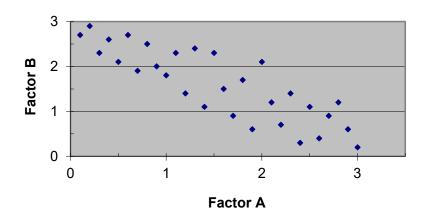

• Will not prove that a cause-and-effect relationship exists (correlation does not equal causation).

Enables teams to test hunches between two factors. Examples:

- Ice Cream sales as they relate to outside temperature.
- Demand for gasoline as it relates to the price at the pump.

Plot Paired Observations



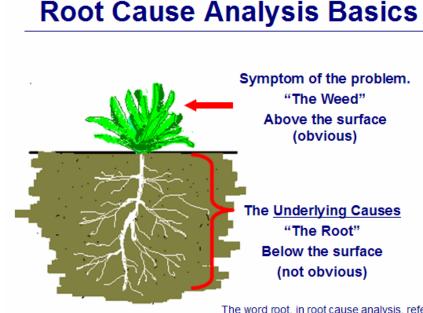

Interpret the Diagram

Narrow band, direct relationship

Circular, no relationship

Wide band, inverse relationship

Root Cause


Why find the root cause of a defect?

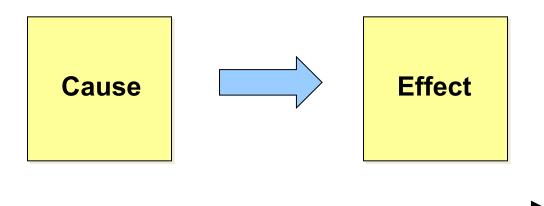
Eliminate the root cause, not the symptom.

➢Problem doesn't reoccur.

Corrective action must:

- ✓ Ensure that the error is physically prevented from occurring again.
- ✓ Prevents a defect / rework loop.

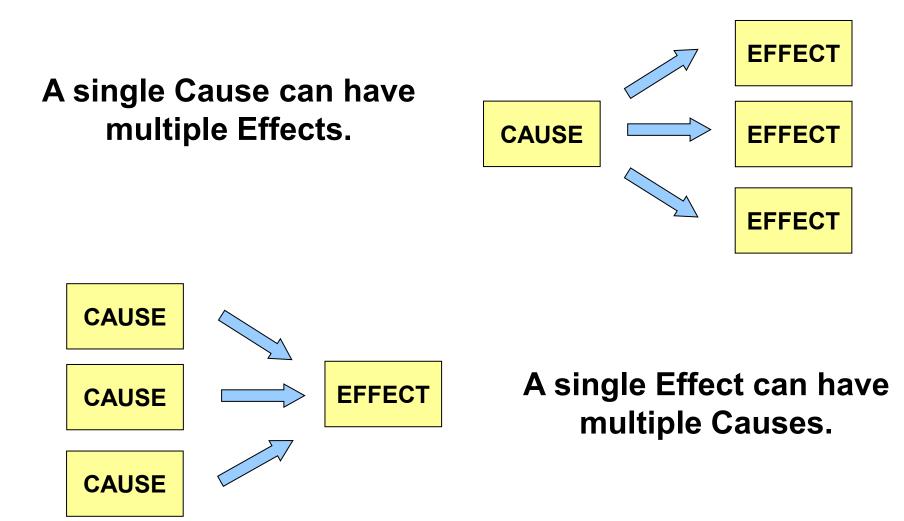
The word root, in root cause analysis, refers to the underlying causes, not the one cause.



33

Root Cause Analysis

Every accident is a notice that something is wrong with men, methods or material – investigate – then act. ~ Safety saying, circa early 1900s


- Cause and Effect may be separated by Time, Logical Flow and / or Location.
- > A Cause and Effect relationship is one-way.
- The Effect is not the Cause!

Time - Logical Flow - Location

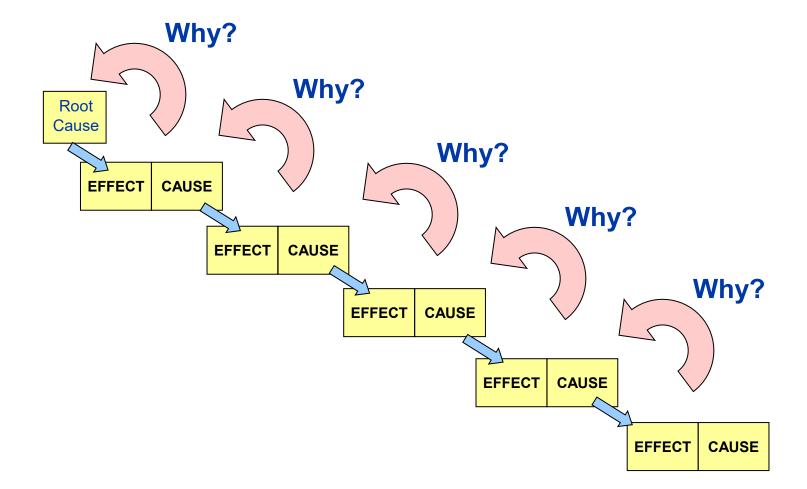
Root Cause Analysis

35

Root Cause Analysis – 5 Whys

What do 3-year olds and good mishap investigators have in common?

They both ask, "Why?"A lot

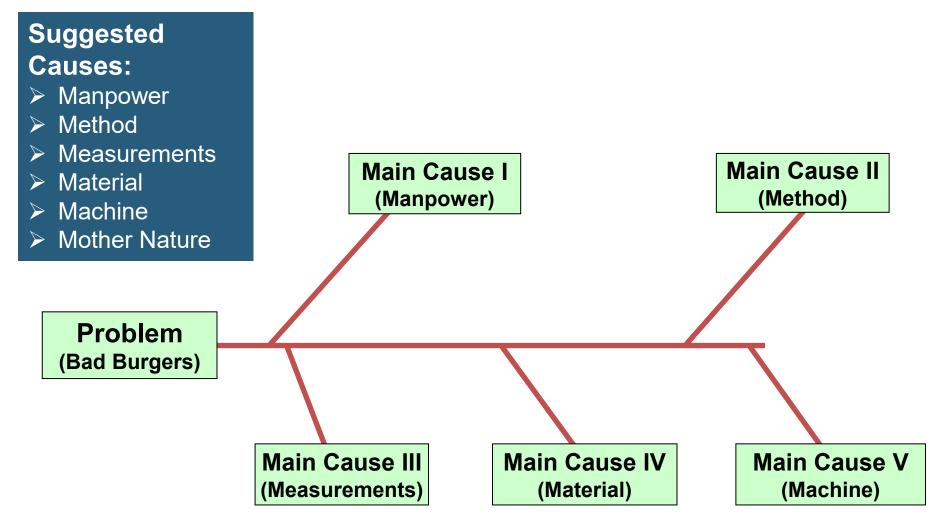


Use the "5 Whys" technique to help identify potential root causes.

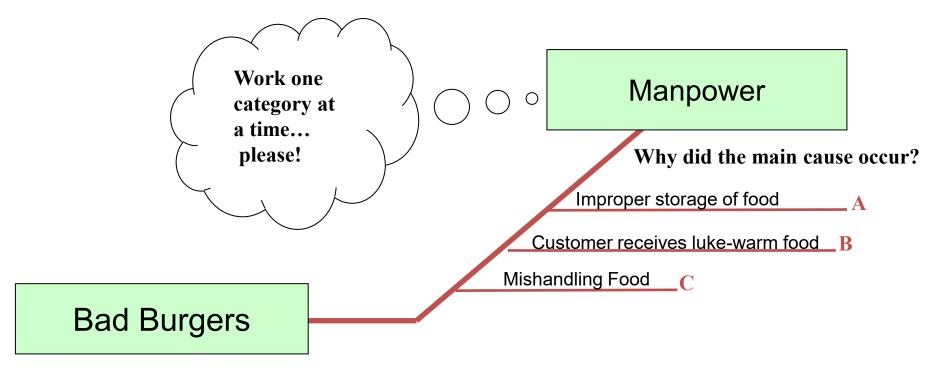
Root Cause Analysis – 5 Whys

5 Whys technique helps identify potential root causes.

Fishbone Diagrams

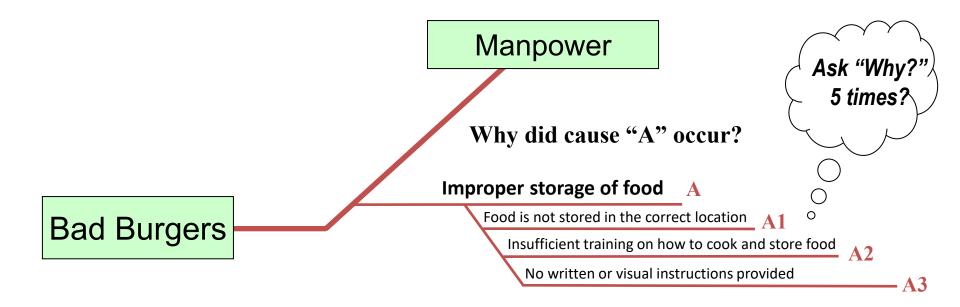

- 1. Breaks problems down into bite-sized pieces.
- 2. Displays many possible causes in a graphic manner.
- 3. Shows how causes interact.
- 4. Follows brainstorming rules when generating ideas.

Fishbone Diagrams


Define problem and determine the main causes (I,II,III, etc.).

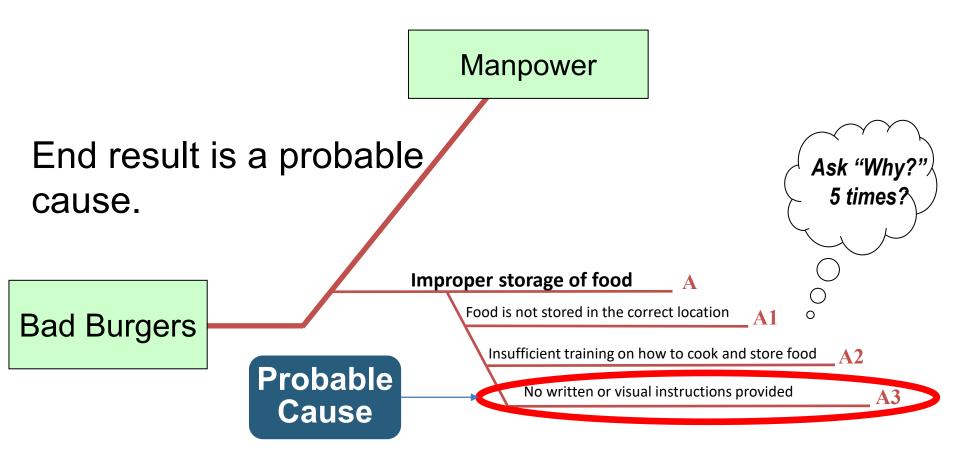
Pick one main cause and ask "Why did the main cause occur?"

• Results in causes A, B, C, ...

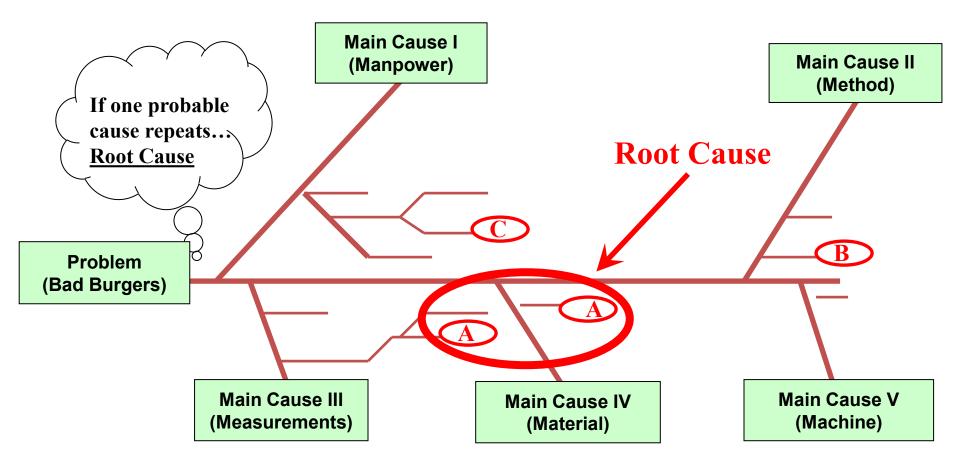


Fishbone Diagrams – Second Level

Pick one main cause and ask "Why did cause A occur?"

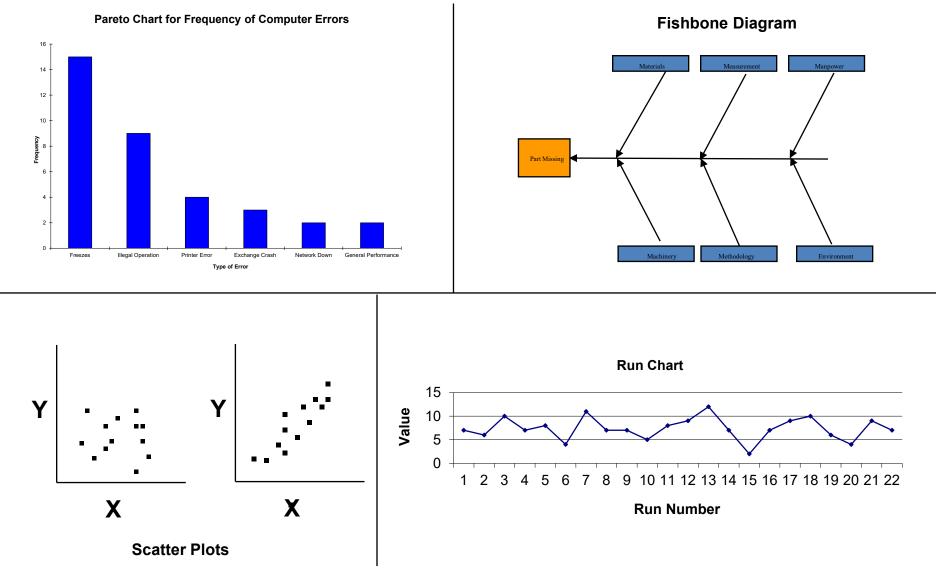

• Results in causes A1, A2, A3, etc.

Fishbone Diagrams – Second Level


Why did cause "A" occur?

Fishbone Diagram - Identify Root Causes

This is an example of what a fish bone looks like when completed.


Fishbone Diagram - Example

Fishbone Diagram Bad Burgers

Root Cause Analysis Tools - Review

Failure Modes & Effects Analysis (FMEA)

A risk assessment method to identify, analyze, prioritize and document potential failure modes, their effects on a process, product or system and the possible failure causes.

- It is a living document that needs to be reviewed and updated whenever a process is changed.
- FMEA Answers These Questions:
 - What the customer will experience if a key process input variable fails?
 - Which action needs to be taken to minimize risk?

Failure Modes & Effects Analysis (FMEA)

- Consider all failure modes of a system or process.
- Determine the effects of failure modes.
- Prioritize the failure modes based on:
 - Severity
 - Frequency of occurrence
 - Ability to escape detection

Prioritizing Failure Modes

- Severity, frequency of occurrence, and escaped detection are rated on relative scales.
- Generic scale is useful as starting point, but revision is necessary to fit the application.

Risk Priority Number (RPN) = Severity X Frequency X Detection

Severity Scale

- 1. No effect on performance.
- 2. Minor loss of performance with negligible effect on output.
- 3. Minor loss of performance.
- 4. Reduced performance.
- 5. Minor inability to meet customer requirements.
- 6. Inability to meet customer requirements.
- 7. Cause serious customer dissatisfaction.
- 8. Cause a failure.
- 9. Break regulations or other law.
- 10.Cause an injury.

Note: This is a sample scale and must be revised to fit your application of FMEA.

Frequency (of Occurrence/Probability) Scale

1	Once every 5 - 10 years	Less than 2/1,000,000,000	
2	Once every 3 - 5 years	Less than 3/10,000,000	
3	Once every 1 - 3 years	Less than 6/1,000,000	
4	Once per year	Less than 6/100,000	
5	Once every 6 months	Less than 1/10,000	
6	Once every 3 months	Less than 0.03%	
7	Once per month	Less than 1%	
8	Once per week	Less than 5%	
9	Once every 3 - 4 days Less than or equal to 30%		
10	Once per day	day Greater than 30%	

Note: This is a sample scale and must be revised to fit your application of FMEA.

Detection Scale

- 1. Immediate detection.
- 2. Easily detected.
- 3. Moderately easy detection.
- 4. Quick detection by Statistical Process Control (SPC).
- 5. Detected by SPC.
- 6. Detected by inspection and error-proofing.
- 7. Detected by manual inspection.
- 8. Frequently undetected.
- 9. Very difficult to detect.
- 10.Cannot be detected.

Note: This is a sample scale and must be revised to fit your application of FMEA.

Failure Mode and Effect Analysis - Example

FMEA of Building Elevators								
ltem	Failure mode	Failure effect	Severity		Occurrence	Controls	Detection	RPN
Doors	Mis-alignment of plastic gib	Door will not close	10	Pushing or hitting door transversely	6	Proper use of elevators	5	300
	Foreign object on track	Door will not close	10	Daily use / poor housekeeping	7	Daily cleaning of track	5	350
	Electronic enter locks	Door will not close	10	Worn or tarnished contacts	6	Replace / clean contacts	1	60
	Hall door not closing properly	Door will not close	10	Failure of hall door retracting spring	2	Replace spring	1	20
	Micro scan failure	Door will not close	10	Dirty cover on scanner strips	9	Proper house keeping (i.e., no mop water allowed to get on sensor face plate)	8	720
Car	Door operator failure	Doors will not open/close	10	Motor failure	3	Replace motor	1	30
				V-belt failure	4	Replace belt	1	40
				Sheave failure	1	Replace sheave	1	10
				"Music box" resistors fail	5	Tune / replace resistors	1	50
	Door clutch failure	Hall doors will not open	10	Clutch spring fails	1	Replace spring	1	10
Buttons	Buttons Jam	Car constantly called to floor of stuck button	10	Dirt accumulation around button	2	Clean space around button	7	140

Statistics

CONTINUOUS PROCESS IMPROVEMENT

IMPROVE

CONTRO

MIEASUPA

LYZE

The Role of Statistics

Descriptive Statistics

 Describing a set of data with graphs and a few summary numbers (central tendency, variation and distribution).

Inferential Statistics

• Using descriptive statistics to make educated guesses about the future (predictions).

Before we can go further with statistics we need to review what we learned about data.

Data Types

- Most information comes to us in <u>qualitative form</u> (job is expensive or takes too long).
- Project information must be collected in <u>quantitative form</u> and can represent:
 - ➤ Whether something happened or not.
 - Attribute or discrete data Counting data.
 - ➤ Specifics about what happened.
 - Variable or continuous data Measurement data.

Statistical Terminology

Population - a complete set; <u>all items</u> of interest

 The number of elements in a population is denoted by *N*.

Sample - a subset of elements from the population

 The number of elements in the sample is denoted by *n*.

We can characterize a population or sample in 3 ways:

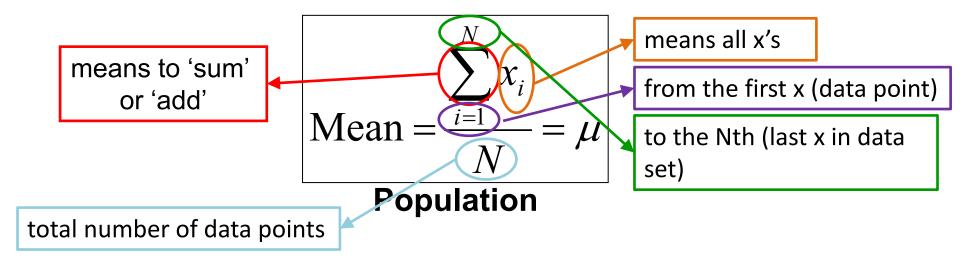
- 1. Measure of central tendency (location of center or middle).
- 2. Measure of variation (spread or width).
- 3. Measure of distribution (what does the set look like when viewed graphically (shape)).

Measures of Central Tendency (Location)

Mean - the average of the population or sample.

• Sum of all values divided by *N* or *n*.

Median - the <u>middle</u> of the population or sample (50% of all values fall on either side of this value).


- The middle value if *N* or *n* is odd.
- The average of the two middle values if *N* or *n* is even.

Mode – the most frequently occurring value.

Measures of Central Tendency - Mean

Est. Mean
$$=\frac{\sum_{i=1}^{n} x_i}{n} = \overline{X}$$
 or $\hat{\mu}$
Sample

Salaries (\$)		
50,000		
85,000		
60,000		
50,000		
75,000		
90,000		
45,000		

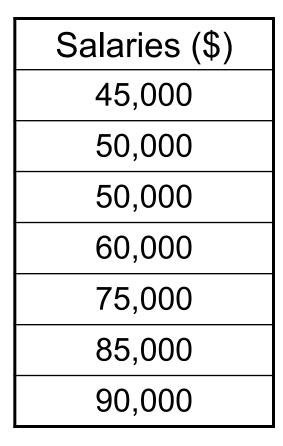
Mean (average):

1. Total the column of values. ($\sum X_i$)

2. Divide by number of values. (n)

Measures of Central Tendency - Median

Salaries (\$)
45,000
50,000
50,000
60,000
75,000
85,000
90,000


Median:

- Place data in order from lowest to highest.
- 2. Find the middle point.
- If middle point is between two numbers, average their values, otherwise it is the middle value.

Measures of Central Tendency - Mode

Mode:

1. Find the most frequently occurring value.

Range – the difference between the greatest value and the smallest value in the data set.

Variance – the average squared distance between an individual data point and the mean.

Standard deviation – is the square root of variance.

Percent variation – when comparing frequencies, a normative way to describe variability.

Measures of Variation

Why do we care about variation?

Because just looking at the central tendency doesn't tell the whole story!

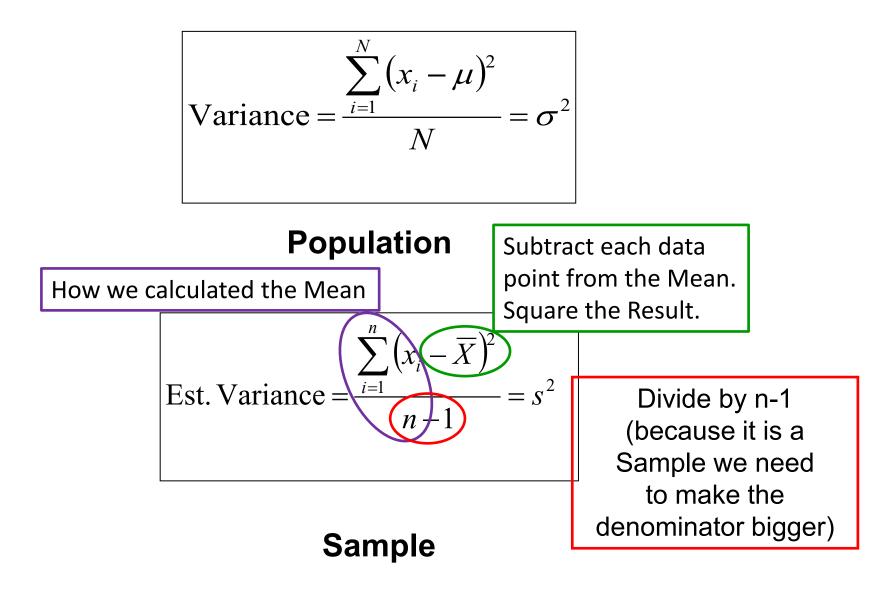
Process 1	Process 2
8	3
9	7
10	10
11	13
12	17

Measures of Variation (Uses)

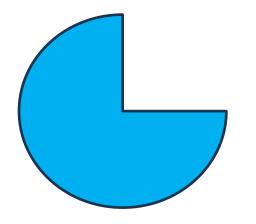
How do we use Variance and Standard Deviation?

- Variance can be used to compare two processes to see if they are similar.
 - Example: Compare process time from 3 different factories to see if they are significantly different or the same. If one factory is different (i.e., worse), you start looking at that factory first.
- Standard Deviation can be used to determine how well your process is working.
 - Can be used to create a control chart.
 - Can be used to describe quality.

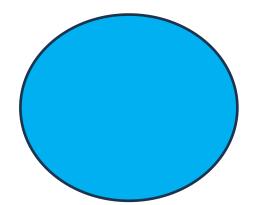
Measures of Variation – Percent Variation


How to compute percent variation.

- Compare the number of blondes vs the number of brunettes in a population.
- 30% are blondes and 35% are brunettes.
- Percentage Variation is 35% 30% = 5%



Measures of Variation - Variance



Measures of Variation – Why n-1?

3/4 of a pie

3/3 of a pie, or 1 pie (better represents the population)

Measures of Variation – Standard Deviation

Std.Dev =
$$\sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} \neq \sigma$$
 The ' σ ' in 6σ

Population

Est. Std. Dev. =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}} = s$$

Sample

Practice: Standard Deviation

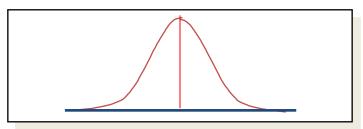
Compute the variance & standard deviation of the sample: {8, 18, 12, 3, 9}

Variance:

- 1. Determine the mean of the column of numbers.
- 2. Subtract the mean from each number in the column.
- 3. Square the difference.
- 4. Add the squares together, divide by n-1.

Standard Deviation: The square root of the variance.

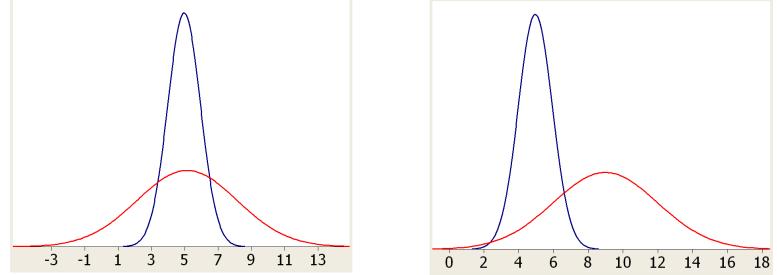
i	X_i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
1			
2			
3			
4			
5			
Totals			


Let's Talk About Distribution (i.e., Shape)

- A graph of the data presents a visual of the data set, that can be more descriptive than just numbers.
- A graph provides a "snapshot" of the central tendency and variability of the data.
- ➢ Mapping the data − common graphs.
 - Histograms, Stem & Leaf plots, Boxplots.
 - Shows the data in relation to the scale.

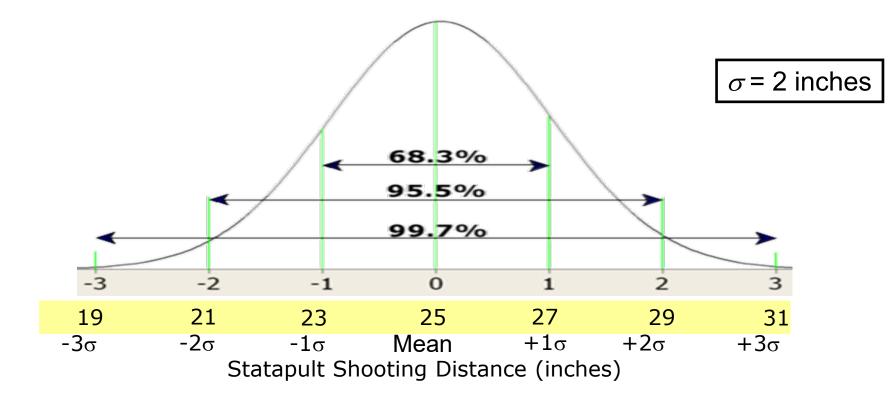
Defining Normal Distributions

- The most common distribution is the normal distribution. It is a variable data distribution with a mean and a standard deviation as its primary measures.
- Normal distribution means that data values are evenly distributed about the mean, and the distribution is symmetric.
- > Normal distribution is the most common shape.



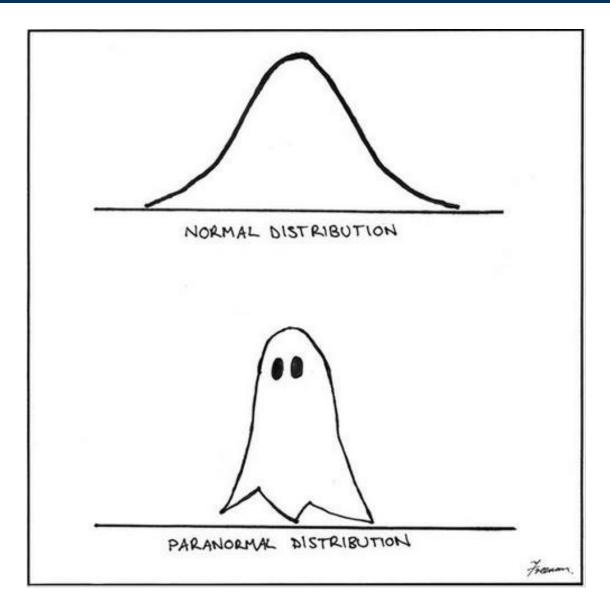
Defining Normal Distributions

Normal distributions are described with two parameters:


- The mean defines the central tendency (location).
- Standard deviation defines variation (spread).

Examine the following data distributions and compare the mean and standard deviation for each:

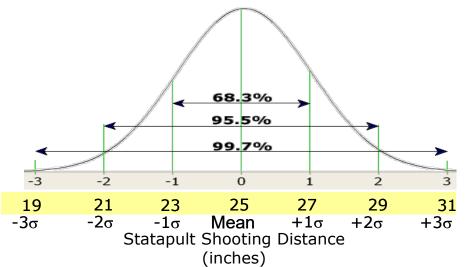
Distribution Characteristics



- 100% of the data is included underneath the curve.
- Certain percentages of data fall between the sigma divisions.
- If you fired the statapult 1,000 times, how many of the shots would fall between 19 and 31 inches?

Answer = _

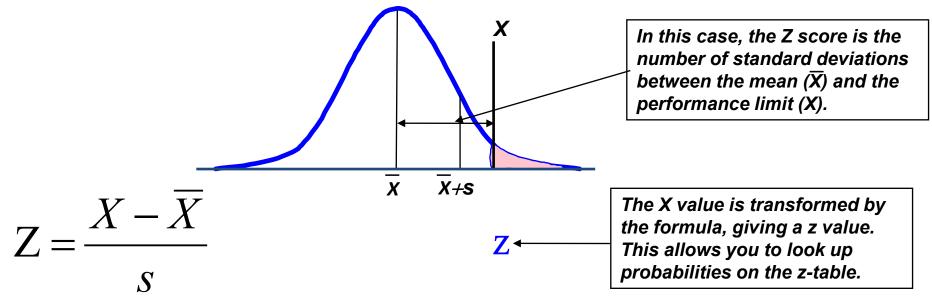
Normal Distribution vs Paranormal Distribution


The Role of Statistics – Inferential Statistics

- Types of data and measures of central tendency, variation and distribution are descriptive statistics.
- Inferential statistics can be used to infer, or make predictions, about processes based on the descriptive statistics.
- Inference is done by using the data for a normal distribution, and specific statistical tables.

The Role of Statistics – Inferential Statistics

One hundred percent of data falls under the curve.


A Z-table is used to compute the probabilities of data falling under a specific area of the curve.

You must have normal distribution to use a Z-table.

Convert Data to Standard Normal Distribution

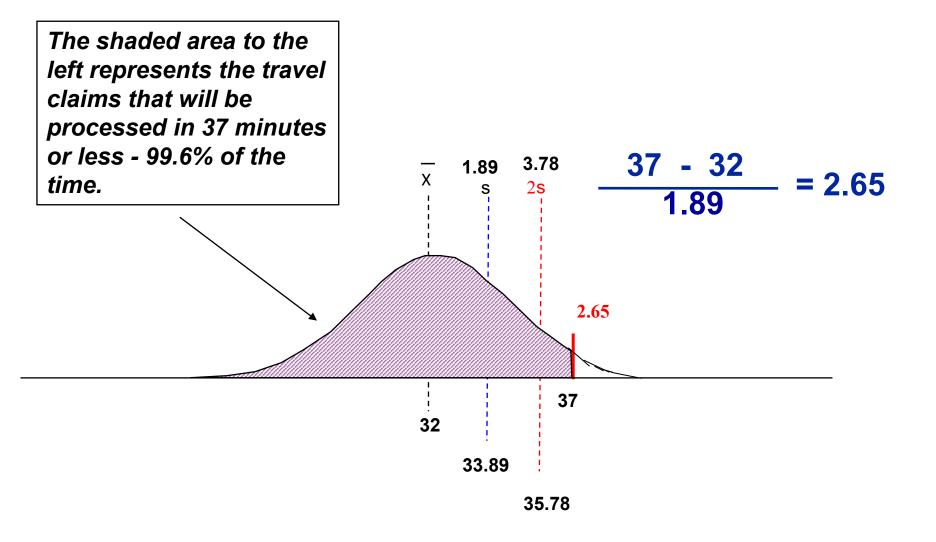
- A Z-table is based on a "Standard Normal" data set which has a mean of 0 and a standard deviation of 1.
- Since real data is not "Standard Normal", you need to transform your data in order to use the Z-table to predict a probability.

- X = The value you are interested in predicting.
- \overline{X} = The mean of your data set.
- s = The standard deviation of your data set.

Using Inferential Statistics (Z-table)

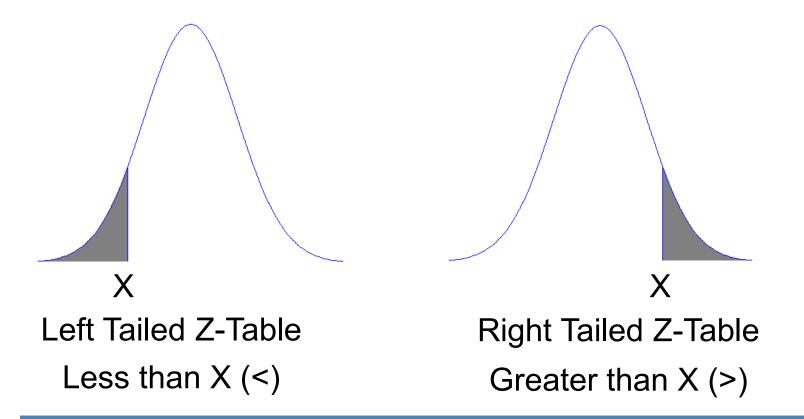
Scenario: You process travel claims. You have instituted a new process and collected data on processing time. It shows that you have a normal data set (distribution) with a mean of 32 minutes and a standard deviation of 1.89 minutes.

Your boss wants to know what are the odds (probability) that a travel claim will be processed in 37 minutes or less.


$$Z = \frac{X - X}{s}$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974

Z Table



Using Inferential Statistics (Z-table)

Z-Table Identification

Typical Z-table always show probabilities less than X (Left Tailed Z-Table).

Right Table Z-Table Value = 1 – Left Tailed Z-Table Value

Central Limit Theorem

- Central Limit Theorem the sampling distribution of the means tend to take the shape of a normal distribution curve.
 - If you have a data set.
 - You can take samples of the data and find the mean of those samples.
 - Then if you plot the means, you will a get a normal distribution.

Central Limit Theorem

What if you don't have normal data?

- If you collect a large enough sample over time, usually the data will take on a normal distribution.
- There are some times, however, when the data will never be normal (Go get a Black Belt).

Central Limit Theorem

Regardless of the shape of the parent population, the distribution of the means calculated from samples quickly *approaches the normal distribution* as shown below:

(a) Normal	(b) Uniform	(c) Exponential	(d) Parabolic						
	Parent P	Population							
			M						
Sampling Distributions of x for n = 2									
	Sampling Distribut	tions of x for n = 5	M						

Sampling Distributions of x for n = 30

Statistical Process Control

CONTINUOUS PROCESS IMPROVEMENT

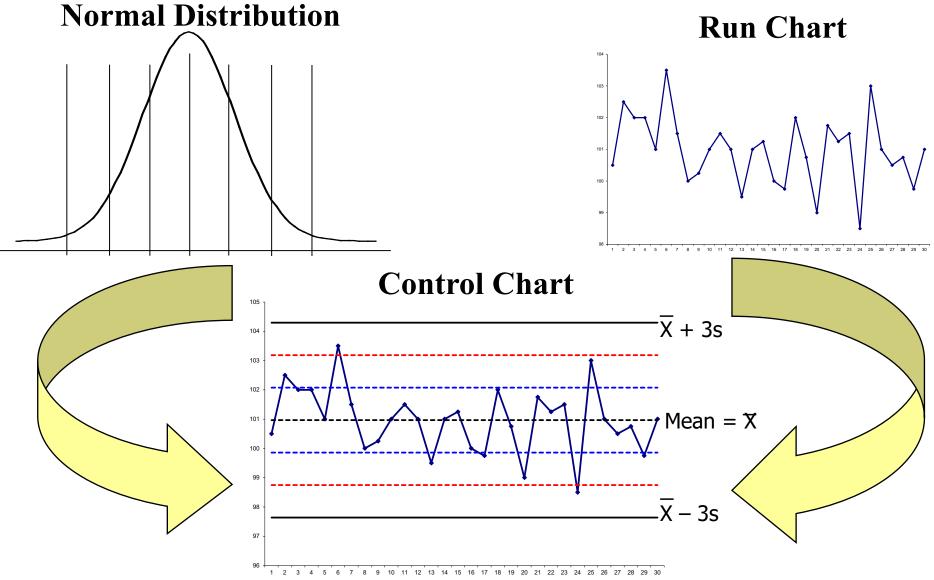
IMPROVE

CONTROL

MEASURE

ALYZE

Statistical Process Control


Statistical Process Control (SPC) is the use of statistical methods to:

- Detect the existence of special cause variation in a process.
- Detect special cause and implement controls to eliminate future occurrences.

Control charts are an important part of SPC.

Shewhart's Control Chart Philosophy

Green Belt Training - Analyze

Control Charts

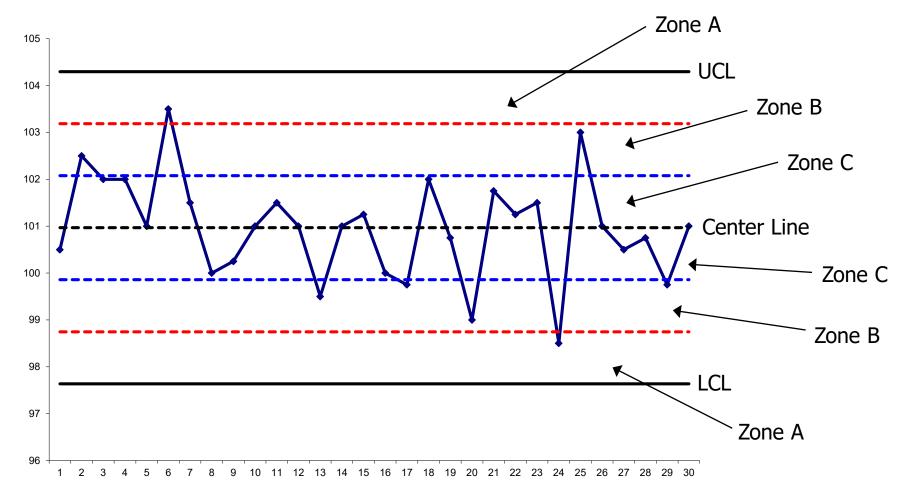
- Control charts are very similar to Run Charts, but have additional information.
 - Centerline (mean)
 - Control Limits
- Used to analyze variation in a process.
 - Attribute (count) based
 - Variable (measurement) based
- > Data types determines control chart.
- Used to determine if variation is inherent to the system (common cause) or caused by an assignable event (special cause).

In Control Processes

- If no out of control conditions exist, then the process is said to be in control.
- In control processes demonstrate common cause variation.
 - Normal variation.
 - Due to the nature of our universe.
- To reduce common cause variation you must change the system.
 - New equipment.
 - New methodologies.

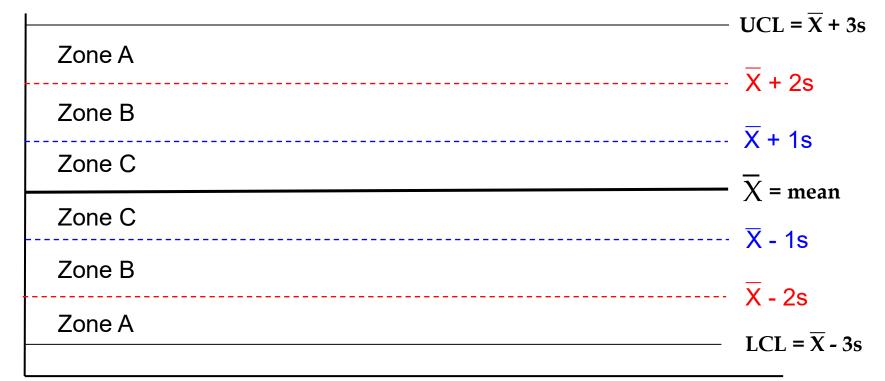
Control Limits

Control Limits


- Calculated from the data as Upper Control Limit (UCL) and Lower Control Limit (LCL).
- Shows the expected range of variation in a process.
- Indicates how the process is actually performing
 - Specification Limits (USL, LSL) indicated how the customer wants the process to perform.
- Different kinds of data require different formulas for calculating the centerline and control limits.
 - Typically, +/- 3 standard deviations from the mean.
 - Unique equations used based on chart type.

Control Charts Zones

Control charts are simple run charts with statistically generated limits!



Control Chart Construction

Steps to create control and zones.

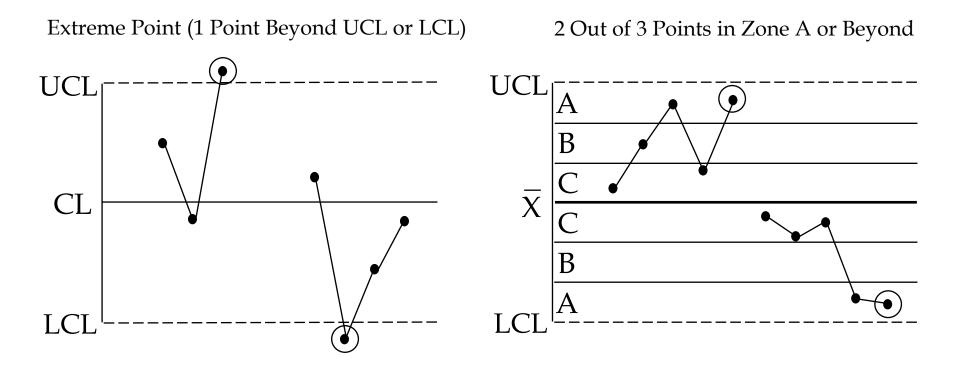
- 1. Calculate mean and standard deviation for baseline data set.
- 2. Plot centerline using mean.
- 3. Plot UCL and LCL using +/- 3 standard deviations.
- 4. Plot control chart zones A, B and C.

Run Number

Value

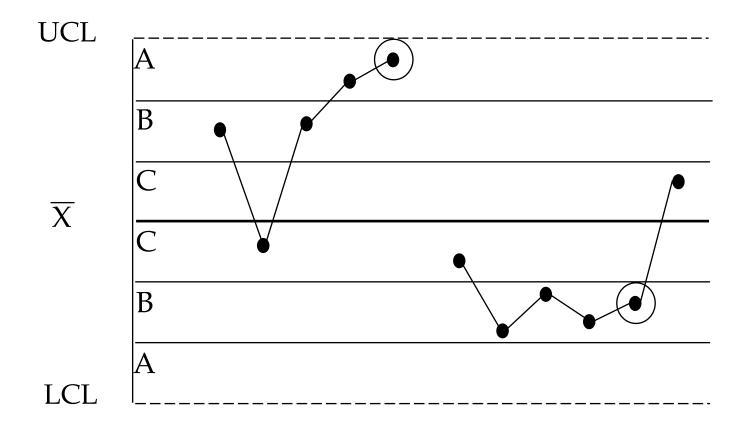
Out of Control Processes

A control chart demonstrates special cause variation if:

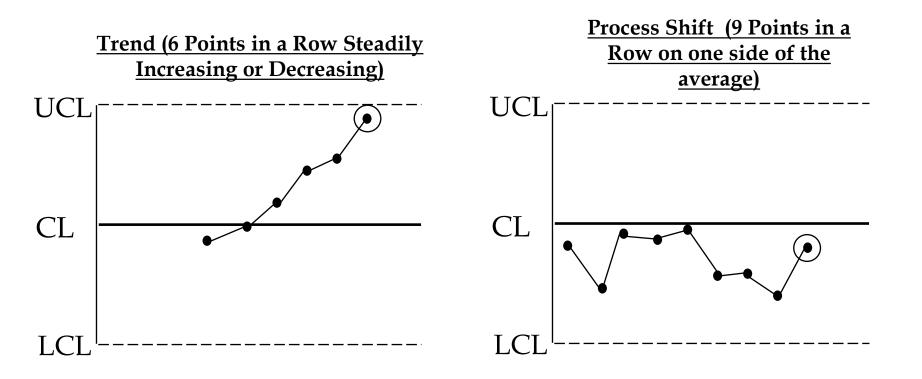

- Points are outside of control limits.
- Increasing / decreasing trends.
- Cycles
- To reduce special cause variation:
 - Find the assignable cause.
 - If appropriate, take action to prevent it from recurring.
 - Standard Work (Improve Phase)
 - Poka-Yoke (Improve Phase)

Out of Control Conditions: Extreme Points

• Out of control conditions are frequently detected by the extreme point condition.

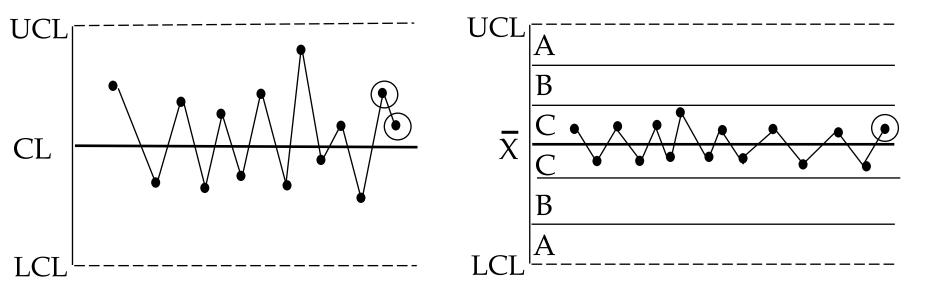

Note that the out of control point is always circled.

Green Belt Training - Analyze


Out of Control Conditions: Extreme Points

4 Out of 5 Points in Zone B or Beyond

Out of Control Conditions: Trends & Shifts



Out of Control Conditions: Oscillation

Oscillation (14 Successive Points Alternating Up and Down)

15 Successive Points Alternating Up and Down in Zone C <u>(above</u> <u>and below the average)</u>

SPC Takeaways

- A stable, predictable, improved process is required to achieve and maintain product quality.
- Variation in processes may be due to either common causes or special causes.
- Control charts monitor the process so that we may act to eliminate or reduce variation.

What We Have Covered: Analyze Phase

Analyze Phase Tools

- Data analysis tools: Histograms, Pareto charts, Fishbone diagrams, etc.
- Root Cause Analysis
- > Data Set Characteristics: Location, Spread and Shape
- Statistical Process Control (SPC) with respect to:
 - Common and Special Cause variation
 - Identify and explain Control Charts

What questions do you have about any area of the Analyze Phase?

